Understanding Timing in Animation Part 2
Please read Understanding Timing in Animation Part 1 before continuing
Because timing is such an important part of an animated presentation, one of the best planning tools for any animator is a stop watch. You can get a great stop watch for estimating the timing of actions for less than $10 at most discount stores. Some people think they need a special “animator's” stop watch which has built in calculations for film footage and/or frames, but this isn't really needed.
Footage is actually another way of representing the amount of time that something is shown on the screen. Depending on the size of the film stock used, you can calculate the number of feet or fractions of feet used to present a specified amount of screen time. Basically instead of saying something lasts on the screen for 16 frames at 24 FPS, you would say it lasts for 1 foot of 35mm film length. The length of film footage created per week has been used historically in many studios as a method of measuring production output. Footage is not a big deal in computer animation, we don’t think in terms of film stocks, and all that you need to calculate the needed number of frames is to know the FPS constant for your movie and then multiply it by the number of seconds or fractions of a second that you decide represents the action. Just remember you can’t have a fraction of a frame, so everything is rounded to the next whole frame.
Once you determine the speed, the spacing is largely a matter of intuition and visualization that comes from lots of practice and experience. Most animators come to understand and appreciate that the “pencil test” is a major often repeated step in the process of adjusting an action’s timing. Fortunately “pencil tests” are quick and easy to perform in the computer world. Each timing problem is unique and there are no simple formulas, it’s primarily a process of trial, adjustment and experience.
We will soon learn how to create and use “timing diagrams” which graphically represent the number of frames used and their relative spacing. An older term for these diagrams, which I also like, is to call them railway diagrams because they resemble a sort of train track. In a complex bit of character animation you will potentially create a number of different timing diagrams because there are many concurrent timing problems associated with the various parts of the performance. But there are more basics to cover before we layer on that complexity.
Rhythm and Beats:
Most timing of actions is based on rhythm. As animators we often learn to get a feel for the timing of an action by humming a little sort of rhythmic beat like “dum-de-dum”. Many animators tap the end of their pencils on their desk to get a feel for the beat. Here is a great trick I recently learned to use as a training aid for getting a better feel for timing rhythms. We can call these rhythm tests. For this example we will set up a movie time line with two seconds worth of frames. How many frames is that going to require? The answer is that it all depends on the presentation frame rate. Our chosen frame rate is 24 FPS. So how many frames do we need for a two second time line? The answer is 2 seconds X 24 FPS = 48 frames. So now we can visually simulate all kinds of timing rhythms by just creating a frame with a black matte that covers the entire movie screen. Then we can place additional copies of this black matte frame at some regular intervals along our timeline. For this example we will put one every 12th frame starting with frame 12. So that’s frames 12, 24, 36, and 48. Now go back and fill in all the other frames preceding each “black” frame with a blank frame or a “white” matte frame. Now you can publish the movie and you will have a timing rhythm that “flashes” a black timing frame every half second. Get the beat? Using this same technique you can set up different timing patterns and then observe them. It’s a neat way to develop a good sense for the various rhythms of timing.
Because timing is such an important part of an animated presentation, one of the best planning tools for any animator is a stop watch. You can get a great stop watch for estimating the timing of actions for less than $10 at most discount stores. Some people think they need a special “animator's” stop watch which has built in calculations for film footage and/or frames, but this isn't really needed.
Footage is actually another way of representing the amount of time that something is shown on the screen. Depending on the size of the film stock used, you can calculate the number of feet or fractions of feet used to present a specified amount of screen time. Basically instead of saying something lasts on the screen for 16 frames at 24 FPS, you would say it lasts for 1 foot of 35mm film length. The length of film footage created per week has been used historically in many studios as a method of measuring production output. Footage is not a big deal in computer animation, we don’t think in terms of film stocks, and all that you need to calculate the needed number of frames is to know the FPS constant for your movie and then multiply it by the number of seconds or fractions of a second that you decide represents the action. Just remember you can’t have a fraction of a frame, so everything is rounded to the next whole frame.
Once you determine the speed, the spacing is largely a matter of intuition and visualization that comes from lots of practice and experience. Most animators come to understand and appreciate that the “pencil test” is a major often repeated step in the process of adjusting an action’s timing. Fortunately “pencil tests” are quick and easy to perform in the computer world. Each timing problem is unique and there are no simple formulas, it’s primarily a process of trial, adjustment and experience.
We will soon learn how to create and use “timing diagrams” which graphically represent the number of frames used and their relative spacing. An older term for these diagrams, which I also like, is to call them railway diagrams because they resemble a sort of train track. In a complex bit of character animation you will potentially create a number of different timing diagrams because there are many concurrent timing problems associated with the various parts of the performance. But there are more basics to cover before we layer on that complexity.
Rhythm and Beats:
Most timing of actions is based on rhythm. As animators we often learn to get a feel for the timing of an action by humming a little sort of rhythmic beat like “dum-de-dum”. Many animators tap the end of their pencils on their desk to get a feel for the beat. Here is a great trick I recently learned to use as a training aid for getting a better feel for timing rhythms. We can call these rhythm tests. For this example we will set up a movie time line with two seconds worth of frames. How many frames is that going to require? The answer is that it all depends on the presentation frame rate. Our chosen frame rate is 24 FPS. So how many frames do we need for a two second time line? The answer is 2 seconds X 24 FPS = 48 frames. So now we can visually simulate all kinds of timing rhythms by just creating a frame with a black matte that covers the entire movie screen. Then we can place additional copies of this black matte frame at some regular intervals along our timeline. For this example we will put one every 12th frame starting with frame 12. So that’s frames 12, 24, 36, and 48. Now go back and fill in all the other frames preceding each “black” frame with a blank frame or a “white” matte frame. Now you can publish the movie and you will have a timing rhythm that “flashes” a black timing frame every half second. Get the beat? Using this same technique you can set up different timing patterns and then observe them. It’s a neat way to develop a good sense for the various rhythms of timing.
6 Comments:
awesome blog! thanks a lot, just wanted to say that the lack of comments doesn't mean the lack of readers, most people, usualy, just prefer to read the posts and rarely write anything in comments. keep it up!
Thanks for the encouragement, we appreciate the thought behind it. Actually we have statistical tracking features that help us to monitor blog readership so we are quite pleased at the numbers of daily and weekly readers which are quite high for this type of subject matter blog. Also we get most of our comments not in the blog but directly through more specific questions directly via e-mails. In case it is not yet easily apparent we are publishing this blog in a more structured form and less randomly so that it will in fact develop into a useful learning resource. Our expectations are for this blog to be frequently "discovered" by aspiring animators and cartoonist and to provide a resource of knowledge and inspiration. Publishing is a previlage and an important way to give back to our community and we will try to continue to serve our current and future readers. And most importantly we want to help as many people as we can to become successful creators of cartoons. There is an ever growing need in the world for them.
THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU!!! I can not express this enough! I am an AM student, I have watched Keith Lengo's VTS stuff and read through the Animators Survival Kit and you have stuff here that is GOLDEN. It really brings the other stuff into context and adds some much needed meat! If I ever get a job in animation I owe a big part to this blog.
ThanX
TV
Thanx mate as the other comments already say, this is golden =) thankyou
Thanks from me too. I know (knew) nothing about this subject but needed a crash course because I'm translating a text on music in animated films. All is much clearer now.
This is fantastic information. Thank you so much for sharing!!! I will be coming back frequently to this blog, for sure.
Another great animation blog is by Brendan Body, an animator at Double Negative in London. He also breaks it down to the prime and then builds it up.
Thanks again.
Post a Comment
<< Home